skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hou, Jin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Betz, Markus; Elezzabi, Abdulhakem Y (Ed.)
    Free, publicly-accessible full text available March 19, 2026
  2. Abstract Efficient extraction of oxygen from ambient waters played a critical role in the development of early arthropods. Maximizing gill surface area enhanced oxygen uptake ability but, with gills necessarily exposed to the external environment, also presented the issue of gill contamination. Here we document setae inserted on the dorsal surface of walking legs of the benthic-dwelling middle CambrianOlenoides serratusand on the gill shaft of the Late OrdovicianTriarthrus eatoni. Based on their physical positions relative to gill filaments, we interpret these setae to have been used to groom the gills, removing particles trapped among the filaments. The coordination between setae and gill filaments is comparable to that seen among modern crustaceans, which use a diverse set of setae-bearing appendages to penetrate between gill filaments when grooming. Grooming is known relatively early in trilobite evolutionary history and would have enhanced gill efficiency by maximizing the surface area for oxygen uptake. 
    more » « less
  3. Abstract Twisted moiré photonic crystal is an optical analog of twisted graphene or twisted transition metal dichalcogenide bilayers. In this paper, we report the fabrication of twisted moiré photonic crystals and randomized moiré photonic crystals and their use in enhanced extraction of light in light-emitting diodes (LEDs). Fractional diffraction orders from randomized moiré photonic crystals are more uniform than those from moiré photonic crystals. Extraction efficiencies of 76.5%, 77.8% and 79.5% into glass substrate are predicted in simulations of LED patterned with twisted moiré photonic crystals, defect-containing photonic crystals and random moiré photonic crystals, respectively, at 584 nm. Extraction efficiencies of optically pumped LEDs with 2D perovskite (BA)2(MA)n−1PbnI3n+1ofn= 3 and (5-(2′-pyridyl)-tetrazolato)(3-CF3−5-(2′-pyridyl)pyrazolato) platinum(II) (PtD) have been measured. 
    more » « less
  4. Abstract Excitons, bound electron–hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E–Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E–Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E–Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E–P modes. These E–Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E–Ps to lower energy E–Ps. Finally, we also demonstrate that E–Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E–Ps opening new opportunities towards their manipulation for polaritonic devices. 
    more » « less
  5. null (Ed.)
    Whether the upper limb branch of Paleozoic “biramous” arthropods, including trilobites, served a respiratory function has been much debated. Here, new imaging of the trilobite Triarthrus eatoni shows that dumbbell-shaped filaments in the upper limb branch are morphologically comparable with gill structures in crustaceans that aerate the hemolymph. In Olenoides serratus , the upper limb’s partial articulation to the body via an extended arthrodial membrane is morphologically comparable to the junction of the respiratory book gill of Limulus and differentiates it from the typically robust exopod junction in Chelicerata or Crustacea. Apparently limited mechanical rotation of the upper branch may have protected the respiratory structures. Partial attachment of the upper branch to the body wall may represent an intermediate state in the evolution of limb branch fusion between dorsal attachment to the body wall, as in Radiodonta, and ventral fusion to the limb base, as in extant Euarthropoda. 
    more » « less
  6. null (Ed.)
    Abstract In order to maximize the utility of future studies of trilobite ontogeny, we propose a set of standard practices that relate to the collection, nomenclature, description, depiction, and interpretation of ontogenetic series inferred from articulated specimens belonging to individual species. In some cases, these suggestions may also apply to ontogenetic studies of other fossilized taxa. 
    more » « less
  7. The layer edge states or low energy state (LES) in 2D hybrid organic–inorganic perovskites demonstrate a prolonged carrier lifetime for better performance of optoelectronic devices. However, the fundamental understanding of LES in 2D perovskites is still inconclusive. Herein, a photoluminescence (PL) study of LES in 2D Ruddlesden–Popper perovskites is presented withn = 2 andn = 3 from their cleaved cross sections that are more stable than the natural edge. The PL measurements clearly observe reversible, and irreversible surface relaxations (case I and case II) in three laser intensity ranges, further supported by a PL excitation cycle from low to high laser intensity, and vice versa. The PL wavelength of LES is tunable with laser intensity and blueshifts with increasing laser intensity during irreversible surface relaxation process (case I). Fluorescence lifetime imaging (FLIM) shows that the LES has a longer lifetime than the band‐edge emission in the sample without a photodegradation, while the BE lifetime becomes relatively longer in the area with a photodegradation. The presented laser tunable LES and the related irreversible relaxation process provide a new insight that can help improve the photostability in 2D perovskites and understand roles of LESs in optoelectronic device performance. 
    more » « less
  8. We present a design strategy for fabricating ultrastable phase-pure films of formamidinium lead iodide (FAPbI3) by lattice templating using specific two-dimensional (2D) perovskites with FA as the cage cation. When a pure FAPbI3precursor solution is brought in contact with the 2D perovskite, the black phase forms preferentially at 100°C, much lower than the standard FAPbI3annealing temperature of 150°C. X-ray diffraction and optical spectroscopy suggest that the resulting FAPbI3film compresses slightly to acquire the (011) interplanar distances of the 2D perovskite seed. The 2D-templated bulk FAPbI3films exhibited an efficiency of 24.1% in a p-i-n architecture with 0.5–square centimeter active area and an exceptional durability, retaining 97% of their initial efficiency after 1000 hours under 85°C and maximum power point tracking. 
    more » « less